101 research outputs found

    Factorization of shell-model ground-states

    Full text link
    We present a new method that accurately approximates the shell-model ground-state by products of suitable states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. The power of this method is demonstrated by computations of ground-states and low-lying excitations in sd-shell and pf-shell nuclei.Comment: 5+epsilon pages, 5 eps-figures. Main additions: wave-function overlaps, angular momentum expectation values, application to Ni56. To be published as Rapid Communication in PR

    Many-body effects in 16O(e,e'p)

    Get PDF
    Effects of nucleon-nucleon correlations on exclusive (e,e′p)(e,e'p) reactions on closed-shell nuclei leading to single-hole states are studied using 16O(e,e′p)15N^{16}O(e,e'p)^{15}N (6.326.32 MeV, 3/2−3/2^-) as an example. The quasi-hole wave function, calculated from the overlap of translationally invariant many-body variational wave functions containing realistic spatial, spin and isospin correlations, seems to describe the initial state of the struck proton accurately inside the nucleus, however it is too large at the surface. The effect of short-range correlations on the final state is found to be largely cancelled by the increase in the transparency for the struck proton. It is estimated that the values of the spectroscopic factors obtained with the DWIA may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9

    Monte Carlo integration in Glauber model analysis of reactions of halo nuclei

    Full text link
    Reaction and elastic differential cross sections are calculated for light nuclei in the framework of the Glauber theory. The optical phase-shift function is evaluated by Monte Carlo integration. This enables us to use the most accurate wave functions and calculate the phase-shift functions without approximation. Examples of proton nucleus (e.g. p-6^6He, p-6^6Li) and nucleus-nucleus (e.g. 6^6He−12-^{12}C) scatterings illustrate the effectiveness of the method. This approach gives us a possibility of a more stringent analysis of the high-energy reactions of halo nuclei.Comment: 20 pages, 8 figure

    Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo

    Get PDF
    The energy per particle of zero-temperature neutron matter is investigated, with particular emphasis on the role of the L⃗⋅S⃗\vec L\cdot\vec S interaction. An analysis of the importance of explicit spin--orbit correlations in the description of the system is carried out by the auxiliary field diffusion Monte Carlo method. The improved nodal structure of the guiding function, constructed by explicitly considering these correlations, lowers the energy. The proposed spin--backflow orbitals can conveniently be used also in Green's Function Monte Carlo calculations of light nuclei.Comment: 4 pages, 1 figur

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,e′p)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende

    Analysis of three-nucleon forces effects in the A=3A=3 system

    Full text link
    Using modern nucleon-nucleon interactions in the description of the A=3,4A=3,4 nuclear systems the χ2\chi^2 per datum results to be much bigger than one. In particular it is not possible to reproduce the three- and four-nucleon binding energies and the n−dn-d scattering length simultaneously. This is one manifestation of the necessity of including a three-nucleon force in the nuclear Hamiltonian. In this paper we perform an analysis of some, widely used, three-nucleon force models. We analyze their capability to describe the aforementioned quantities and, to improve their description, we propose modifications in the parametrization of the models. The effects of these new parametrization are studied in some polarization observables at low energies.Comment: 10 pages, to be published in Few-Body Systems. Presented at the workshop on "Relativistic Description of Two- and Three-body Systems in Nuclear Physics" ECT* Trento, 19 - 23 October 200

    Mass Dependence of M3Y-Type Interactions and the Effects of Tensor Correlations

    Get PDF
    The mass dependence of the M3Y-type effective interactions and the effects of tensor correlations are examined. Two-body nuclear matrix elements are obtained by the lowest order constrained variational (LOCV) technique with and without tensor correlations. We have found that the tensor correlations are important especially in the triplet-even (TE) and tensor-even (TNE) channels in order to reproduce the G-matrix elements obtained previously. Then M3Y-type potentials for inelastic scattering are obtained by fitting our two-body matrix elements to those of a sum of Yukawa functions for the mass numbers A=24, A=40 and A=90.Comment: 13 pages, 6 table

    Neutron matter at zero temperature with auxiliary field diffusion Monte Carlo

    Full text link
    The recently developed auxiliary field diffusion Monte Carlo method is applied to compute the equation of state and the compressibility of neutron matter. By combining diffusion Monte Carlo for the spatial degrees of freedom and auxiliary field Monte Carlo to separate the spin-isospin operators, quantum Monte Carlo can be used to simulate the ground state of many nucleon systems (A\alt 100). We use a path constraint to control the fermion sign problem. We have made simulations for realistic interactions, which include tensor and spin--orbit two--body potentials as well as three-nucleon forces. The Argonne v8′v_8' and v6′v_6' two nucleon potentials plus the Urbana or Illinois three-nucleon potentials have been used in our calculations. We compare with fermion hypernetted chain results. We report results of a Periodic Box--FHNC calculation, which is also used to estimate the finite size corrections to our quantum Monte Carlo simulations. Our AFDMC results for v6v_6 models of pure neutron matter are in reasonably good agreement with equivalent Correlated Basis Function (CBF) calculations, providing energies per particle which are slightly lower than the CBF ones. However, the inclusion of the spin--orbit force leads to quite different results particularly at relatively high densities. The resulting equation of state from AFDMC calculations is harder than the one from previous Fermi hypernetted chain studies commonly used to determine the neutron star structure.Comment: 15 pages, 15 tables and 5 figure

    Selected Topics in Three- and Four-Nucleon Systems

    Full text link
    Two different aspects of the description of three- and four-nucleon systems are addressed. The use of bound state like wave functions to describe scattering states in N−dN-d collisions at low energies and the effects of some of the widely used three-nucleon force models in selected polarization observables in the three- and four-nucleon systems are discussed.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201
    • …
    corecore